

Introduction to Differentiation

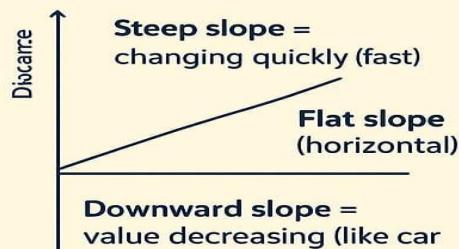
Mr. Subhajit Das (MSc in Mathematics.)

Faculty at EDUCIRAN

for Mathematics

What is Differentiation?

Differentiation means “finding how fast something is changing”.


Introduction to Differentiation (Super Easy Way)

1. What is Differentiation?

Differentiation means
“finding how fast something
is changing”

2. Graph Idea (Visual)

So, differentiation = slope of the curve at a point

4. The Simple Rule (Power Rule)

If a function is like:

$$f(x) = x^n$$

then the derivative is:

$$f(x) = n \cdot x^{n-1}$$

Differentiation = A tool to
measure and predict change

Real-Life Examples

Car Speed = Distance changes over time (fast car → big change, slow car → small change)

Water Filling a Tank
Volume of water changes every minute

Plant Growth
Height changes each day (maybe 1 cm today, 2 cm tomorrow)

3. Key Concept

When we differentiate a function, we get a new thing called the derivative.

The derivative tells us:

- > The rate of change (how fast something is changing)
- > The slope of the graph at that moment

5. Easy Examples

$$f(x) = x^2 \rightarrow f(x) = 2x$$

$$f(x) = x^3 \rightarrow f(x) = 3x^2$$

$$f(x) = 5x^4 \rightarrow f(x) = 20x^3$$

Differentiation = A tool to

Example

You are in a car. The speedometer tells you how fast your position is changing.

Differentiation does the same thing in math — it tells us the rate of change.

Real-Life Examples

- A) *Car Speed* – Distance changes over time (fast car → big change, slow car → small change).
- B) *Water Filling a Tank* – Volume of water changes every minute.
- C) *Plant Growth* – Height changes each day (maybe 1 cm today, 2 cm tomorrow).

Differentiation = finding how fast these changes happen.

Graph Idea (Visual)

If we draw a graph of a function (like distance vs. time):

Steep slope = changing quickly (fast).

Flat slope (horizontal) = no change (speed = 0).

Downward slope = value decreasing (like car going backward).

So, differentiation = slope of the curve at a point.

Key Concept

When we differentiate a function, we get a new thing called the derivative.

The derivative tells us:

The rate of change (how fast something is changing).

The slope of the graph at that moment.

The Simple Rule (Power Rule)

If a function is like:

$$f(x) = x^n$$

$$f'(x) = n \times x^{n-1}$$

Easy Examples

1. If $x = 3$, slope = 6. (At that point, the curve is changing 6 units fast)
2. At $x = 2$, slope = 12
3. At $x = 1$, slope = 20.

Why Learn Differentiation?

It's super useful!

Science : Speed, acceleration, light, heat, electricity.

Economics : How fast prices or profits are rising or falling.

Engineering : Machine parts, construction, motion.

Everyday life : Growth, speed, predicting future changes.

Simply put

Differentiation = A tool to measure and predict change.

Quick understanding for Students

If your mobile battery % is decreasing every minute, differentiation tells you how fast it is draining.

If your height is growing each year, differentiation tells you how many cm you're growing right now.

-August 2025-